treex.metrics.Metric
Encapsulates metric logic and state. Metrics accumulate state between calls such that their output value reflect the metric as if calculated on the whole data given up to that point.
Source code in treex/metrics/metric.py
class Metric(Treex, metaclass=MetricMeta):
"""
Encapsulates metric logic and state. Metrics accumulate state between calls such
that their output value reflect the metric as if calculated on the whole data
given up to that point.
"""
_initial_state: tp.Dict[str, tp.Any] = types.MetricState.node()
def __init__(
self,
on: tp.Optional[types.IndexLike] = None,
name: tp.Optional[str] = None,
dtype: tp.Optional[jnp.dtype] = None,
):
"""
Arguments:
on: A string or integer, or iterable of string or integers, that
indicate how to index/filter the `target` and `preds`
arguments before passing them to `call`. For example if `on = "a"` then
`target = target["a"]`. If `on` is an iterable
the structures will be indexed iteratively, for example if `on = ["a", 0, "b"]`
then `target = target["a"][0]["b"]`, same for `preds`. For more information
check out [Keras-like behavior](https://poets-ai.github.io/elegy/guides/modules-losses-metrics/#keras-like-behavior).
"""
self._labels_filter = (on,) if isinstance(on, (str, int)) else on
self.name = name if name is not None else utils._get_name(self)
self.dtype = dtype if dtype is not None else jnp.float32
def __call__(self, **kwargs) -> tp.Any:
if self._labels_filter is not None:
if "target" in kwargs and kwargs["target"] is not None:
for index in self._labels_filter:
kwargs["target"] = kwargs["target"][index]
if "preds" in kwargs and kwargs["preds"] is not None:
for index in self._labels_filter:
kwargs["preds"] = kwargs["preds"][index]
# update cumulative state
self.update(**kwargs)
# compute batch metrics
module = to.copy(self)
module.reset()
module.update(**kwargs)
return module.compute()
def reset(self):
def do_reset(metric):
if isinstance(metric, Metric):
metric.__dict__.update(to.copy(metric._initial_state))
self.apply(do_reset, inplace=True)
@abstractmethod
def update(self, **kwargs) -> None:
...
@abstractmethod
def compute(self) -> tp.Any:
...
def __init_subclass__(cls):
super().__init_subclass__()
# add call signature
old_call = cls.__call__
@functools.wraps(cls.update)
def new_call(self: M, *args, **kwargs) -> M:
if len(args) > 0:
raise TypeError(
f"All arguments to {cls.__name__}.__call__ should be passed as keyword arguments."
)
return old_call(self, *args, **kwargs)
cls.__call__ = new_call
__init__(self, on=None, name=None, dtype=None)
special
Parameters:
Name | Type | Description | Default |
---|---|---|---|
on |
Union[str, int, Sequence[Union[str, int]]] |
A string or integer, or iterable of string or integers, that
indicate how to index/filter the |
None |
Source code in treex/metrics/metric.py
def __init__(
self,
on: tp.Optional[types.IndexLike] = None,
name: tp.Optional[str] = None,
dtype: tp.Optional[jnp.dtype] = None,
):
"""
Arguments:
on: A string or integer, or iterable of string or integers, that
indicate how to index/filter the `target` and `preds`
arguments before passing them to `call`. For example if `on = "a"` then
`target = target["a"]`. If `on` is an iterable
the structures will be indexed iteratively, for example if `on = ["a", 0, "b"]`
then `target = target["a"][0]["b"]`, same for `preds`. For more information
check out [Keras-like behavior](https://poets-ai.github.io/elegy/guides/modules-losses-metrics/#keras-like-behavior).
"""
self._labels_filter = (on,) if isinstance(on, (str, int)) else on
self.name = name if name is not None else utils._get_name(self)
self.dtype = dtype if dtype is not None else jnp.float32
__init_subclass__()
classmethod
special
This method is called when a class is subclassed.
The default implementation does nothing. It may be overridden to extend subclasses.
Source code in treex/metrics/metric.py
def __init_subclass__(cls):
super().__init_subclass__()
# add call signature
old_call = cls.__call__
@functools.wraps(cls.update)
def new_call(self: M, *args, **kwargs) -> M:
if len(args) > 0:
raise TypeError(
f"All arguments to {cls.__name__}.__call__ should be passed as keyword arguments."
)
return old_call(self, *args, **kwargs)
cls.__call__ = new_call