tensorbuilder.patches.rnn_utilities_patch module
from phi import utils from tensorbuilder import TensorBuilder @TensorBuilder.RegisterMethod("tb") def rnn_placeholders_from_state(self, zero_state, name="rnn_state"): if isinstance(zero_state, tuple): return tuple([self.rnn_placeholders_from_state(substate, name=name) for substate in zero_state]) else: return tf.placeholder(zero_state.dtype, shape=zero_state.get_shape(), name=name) @TensorBuilder.RegisterMethod("tb") def rnn_state_feed_dict(self, placeholders, values): return dict(zip(utils.flatten(placeholders), utils.flatten_list(values)))
Functions
def rnn_placeholders_from_state(
self, zero_state, name='rnn_state')
THIS METHOD IS AUTOMATICALLY GENERATED
builder.rnn_placeholders_from_state(*args, **kwargs)
It accepts the same arguments as tb.rnn_placeholders_from_state
.
tb.rnn_placeholders_from_state
None
@TensorBuilder.RegisterMethod("tb") def rnn_placeholders_from_state(self, zero_state, name="rnn_state"): if isinstance(zero_state, tuple): return tuple([self.rnn_placeholders_from_state(substate, name=name) for substate in zero_state]) else: return tf.placeholder(zero_state.dtype, shape=zero_state.get_shape(), name=name)
def rnn_state_feed_dict(
self, placeholders, values)
THIS METHOD IS AUTOMATICALLY GENERATED
builder.rnn_state_feed_dict(*args, **kwargs)
It accepts the same arguments as tb.rnn_state_feed_dict
.
tb.rnn_state_feed_dict
None
@TensorBuilder.RegisterMethod("tb") def rnn_state_feed_dict(self, placeholders, values): return dict(zip(utils.flatten(placeholders), utils.flatten_list(values)))